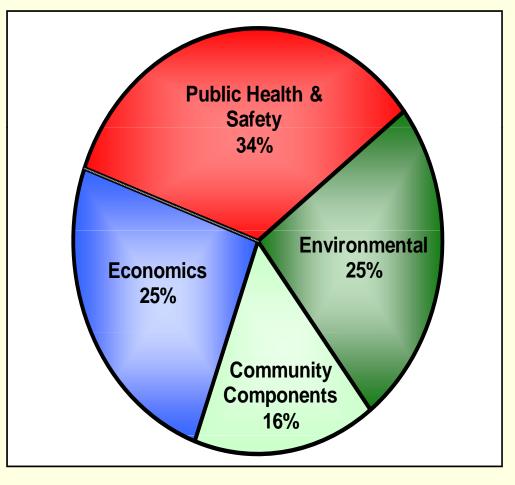


J Street Drain Project

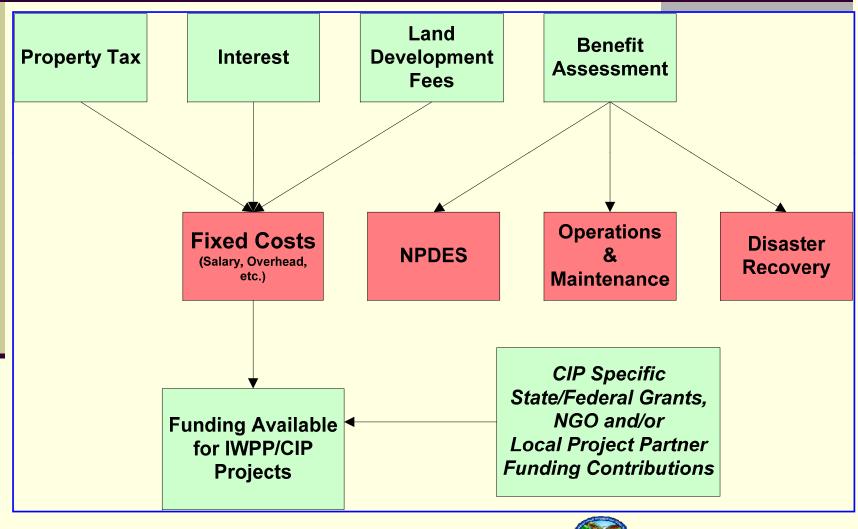

Public Information Meeting

J Street Drain History – Part I

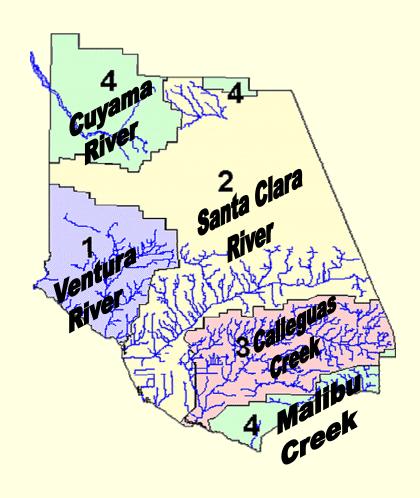
- 1956 J Street Drain Constructed
- 1961 Earthen Channel Concrete-Lined
- ☐ 1984 FEMA Flood Insurance Study
- ☐ 2005 South Oxnard Floodplain Study
- 2005 Project Ranking and Selection


FLOOD PROTECTION

- Over 400 Homes and Businesses would be Removed from the Flood Plain
- \$ 56,000,000 Flood Damage Reduction
- \$33,000,000 Construction Cost


Background: Project Prioritization Criteria

CATEGORY	FACTORS		
Public Health	Flooding of buildings,		
& Safety	streets, agricultural		
-	resources (extent,		
	magnitude & repairs)		
Environ.	Streambank and		
	habitat protection,		
	water quality and		
	supply impacts,		
	CEQA and regulatory		
	issues		
Community	Recreation and socio-		
Components	economic benefits,		
	construction impacts		
	and stakeholder		
	acceptance		
Project	B/C ratio, Property		
Economics	Acquisition,		
	Constructability,		
	Sustainability &		
	Funding		



Background: District Revenue Sources

Background: Watersheds, Zones and Facilities

- Area: 1800 Square Miles
- Four Zones
- Three Major Watersheds
 - Calleguas Creek
 - Santa Clara River
 - Ventura River
- 10 Cities and the County Unincorporated Areas
- Facilities:
 - 209 Channel Miles
 - 68 Levee Miles
 - 44 Debris and Detention Basins
 - 4 Pumping Plants

Background: Annual Fixed Revenues

Property Tax Revenues:

- Zone 1 (Ventura): \$1.9 Million
- Zone 2 (Santa Clara): \$7.9 Million
- Zone 3 (Calleguas): \$6.0 Million
- Zone 4 (Malibu/Cuyama): \$120,000

Annual Benefit Assessment:

- O&M All Zones: \$7.9 Million
- NPDES: \$1.4 Million

J Street Drain History – Part 2

- 2008 Preliminary Design & CEQA Initiated
- 2009 DEIR Release for Public Review
- 2010 Flood Emergency North of Ormond Lagoon
- ☐ 2010-2011 EPA Released New Halaco Results
- 2010-2011 Completion of Additional Studies
- ☐ 2011 Release of RDEIR for Public Review

January 18, 2010 Flood Emergency

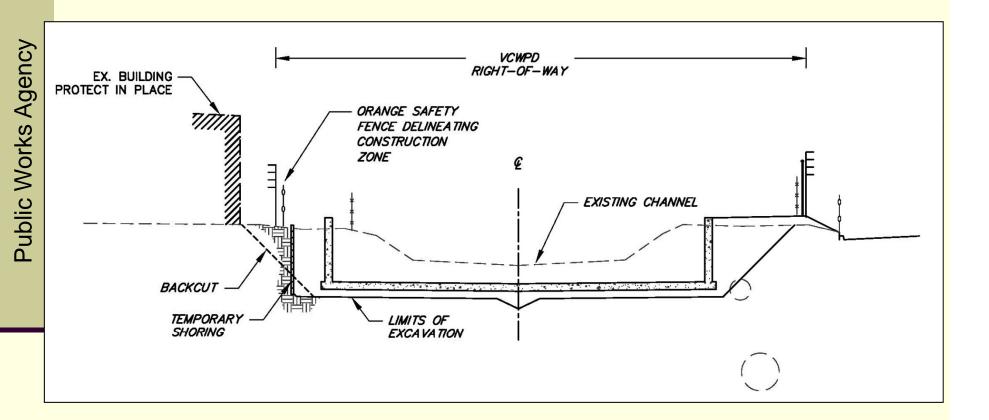
Ventura County Watershed Protection District

January 18, 2010 Flood Emergency

Ventura County Watershed Protection District

Phase IV Yucca Street To Redwood Street (Future) Phase III Pleasent Valley Road To Yucca Street (Future) Phase II Hueneme Road To Pleasent Valley Road (2017) Phase I Ormond Beach To Hueneme Road (2013)

PROJECT PHASES



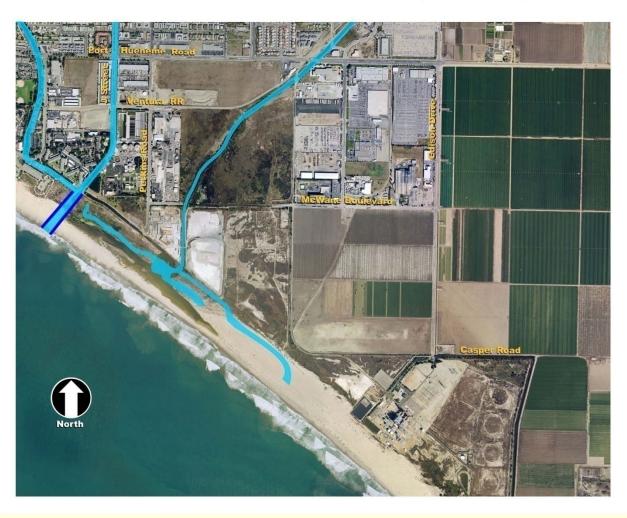
Alternatives J Street Drain Project /entura County Watershed Protection District A В Existing Utility to be Relocated -Existing Utilities to be Relocated

CHANNEL ALTERNATIVES

- Reinforced Box Culvert (not south of Hueneme Road)
- Vertical Wall Channel (Preferred Alternative)
- Low Flow Channel with Overflow Area
- Dual Reinforced Box Culvert (not south of Hueneme Road)
- Natural Channel Section

Trench vs. Vertical Shoring

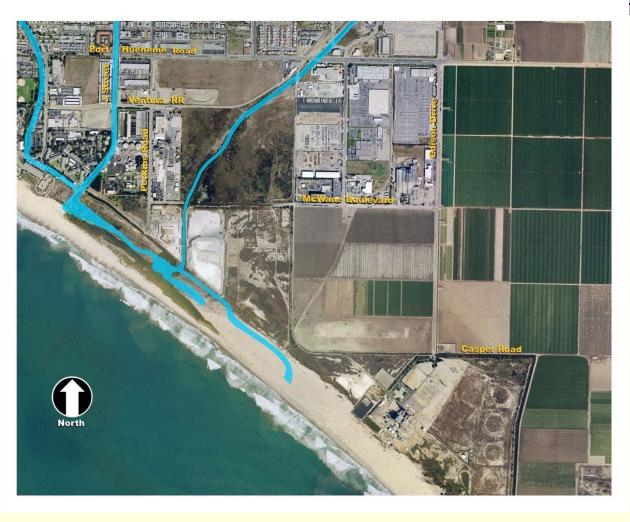
Outlet Design Alternatives


- J St Drain Outlet at Ormond Beach
 - Alternative A: Dike System (Direct Outlet to Ocean)
 - Alternative B: Lagoon Expansion with BEMP (Compatible with Coastal Conservancy Restoration Goals)
 - Alternative C (Preferred Alternative):
 Natural Breach with BEMP
 (Compatible with Coastal Conservancy Restoration Goals)

Alternative A: Dike System

Alternative B: Natural System

LEGEND - Open Water


Ventura County Watershed Protection District

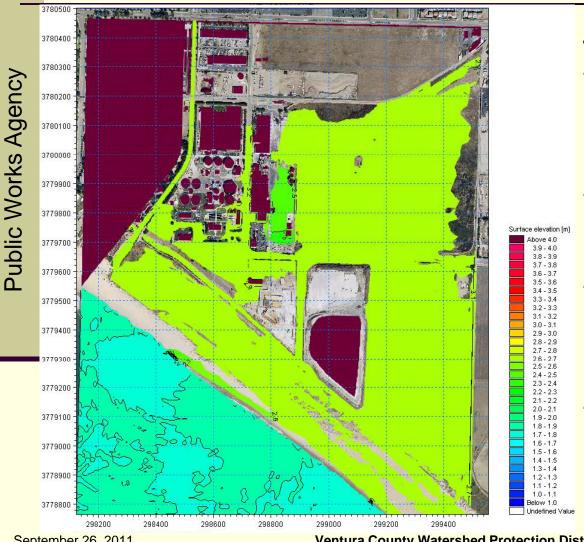
Alternative C: Preferred

Beach Elevation Management Plan

- Replaces Emergency Action Plan (EAP) in 2009 DEIR
- Response to January 18, 2010 flood emergency
- Monitor beach sand berm elevation before predicted storms
- Target safe water surface elevation based on January 2010 event flood analysis
- If needed, shave top of berm to facilitate natural breach during future storm event
- BEMP would not directly breach lagoon

September 26, 2011

Ventura County Watershed Protection District

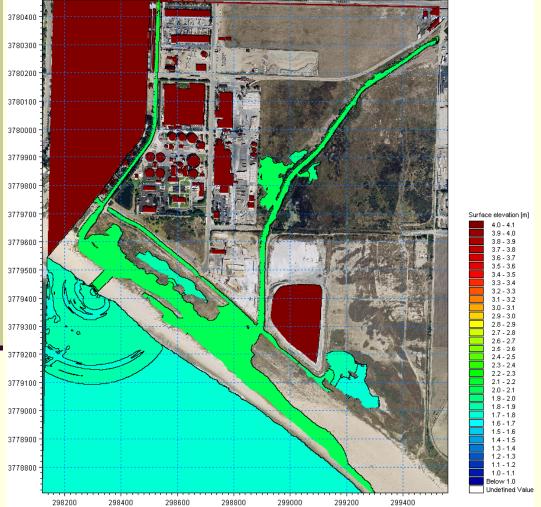


Additional Studies

- Studies were needed to address new information and public comments:
 - Inland Flooding Study to refine the proposed EAP
 - Coastal Processes investigation to determine maximum safe elevation of beach sand berm
 - Hydrogeology Study to determine effect of groundwater dewatering on Halaco plume
 - Sediment Transport Study for Proposed Outlet to Lagoon
 - Mosquito Technical Study

Inland Flooding Study

January 17-18, 2010 Flooding


- -Flooding occurred at the Oxnard Wastewater Treatment Plant and the **International Paper Plant**
- -The total rainfall from this storm was equivalent to a 2-Year Storm
- -Storms & high surf of Dec 2009 Jan 2010 caused the sand berm to grow approximately 1.5 feet higher than expected
- -County staff breached the sand berm near J Street Drain to relieve flooding conditions

Ventura County Watershed Protection District

Inland Flooding Study

100-Year WS with Grooming

- -Manage berm height near J St Drain to 6.5 feet NGVD
- -Additional storm flows will cause the berm to breach
- -Under breached conditions
 Ormond Beach Lagoon
 becomes a tidal waterbody
- -Maximum water surface in lagoon is 7.5 feet NGVD

Coastal Processes Investigation

Project	Year Dredged	Quantities (CY)	Disposal Site
Channel Islands	FY01	1,235,950	
	FY03	2,062,695	
	FY05	2,140,915	
	FY07	1,171,035	
	FY09	2,198,040	Hueneme
	FY11	968,530	
Port Hueneme	FY01	0	Beach
	FY03	0	
	FY05	27,200	
	FY07	0	
	FY09	686,000*	
	FY11	0	

Beach Nourishment Plan

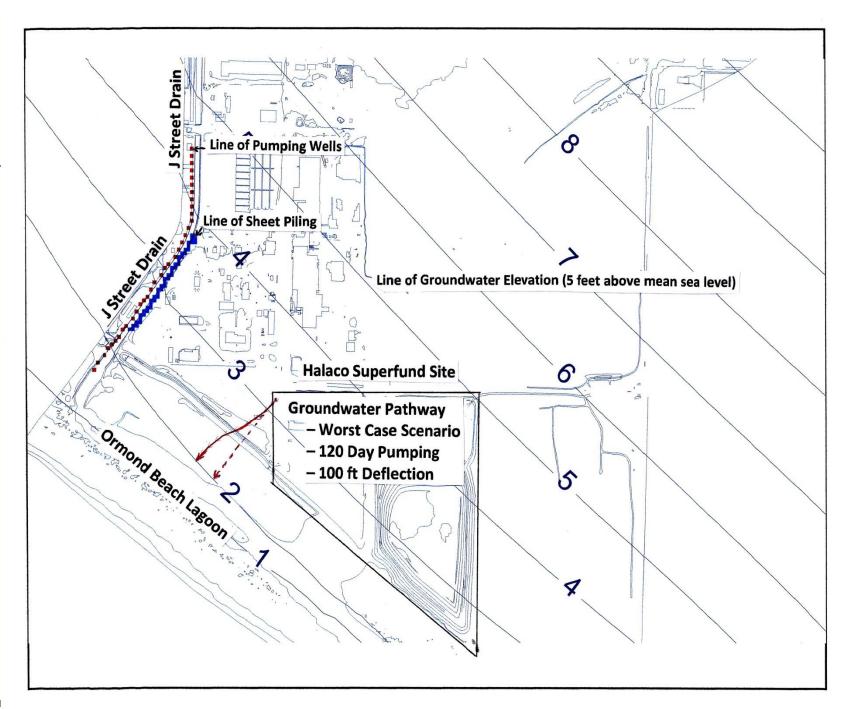
- -USACE sand bypass to Hueneme Beach
- -Bypass operation occurs every 2 years
- -2009 sand bypass quantity was 2,884,040 cubic yards (CY)
- -Increased sand at Hueneme Pier by 3 feet
- -Increased sand berm at Ormond Beach Lagoon by 1.5 feet

Hydrogeology Study

Evaluate effects from dewatering in J Street Drain that is necessary during construction (2-4 months of pumping to lower water table ~3 to 6 ft)

Objectives:

- 1 Identify pathway of groundwater flow in response to dewatering – southern portion only
- 2 Evaluate potential plume migration from Halaco Superfund Site
- 3 Identify potential mitigation to prevent movement of groundwater from the Halaco Site


Hydrogeology Study: Conclusions

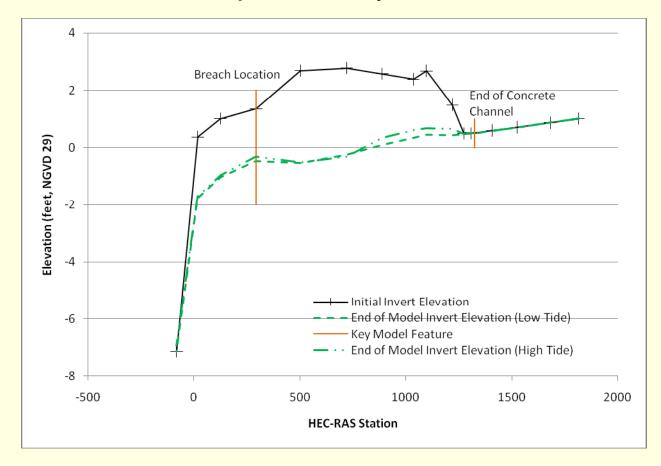
- Mitigate by installing sheet piling to minimize migration of Halaco Site groundwater toward J Street Drain
- Refined field testing to identify the geographic extent of mitigation measure is pending
- Migration of groundwater from Halaco Site in response to dewatering will not reach the dewatering wells

Objectives

- Investigate potential for existing lagoon bottom to erode once beach sand berm is breached.
- Identify recurrence interval for flood able to provide positive drainage from the proposed J Street Drain outlet (2.5 ft lower than existing lagoon bottom) to the ocean.
- Determine if an equilibrium slope will form in the lagoon bottom.

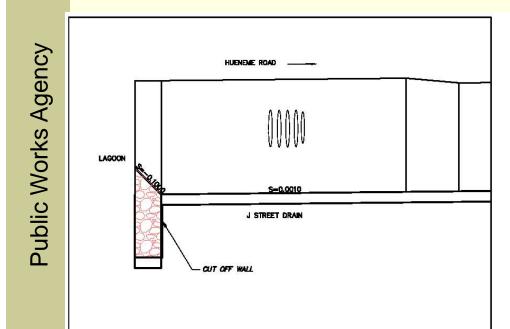
Conclusions

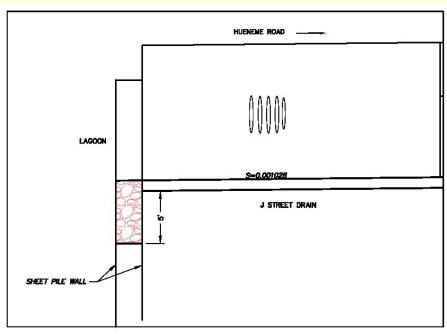
- Two sequential 2-year floods would erode lagoon bottom to provide positive drainage.
- One 5-year flood would have the same results.
- In either case, an equilibrium channel bottom slope forms similar to the slope of the proposed J Street Drain channel.
- Once eroded, the lagoon bottom is not anticipated to fill in from J Street Drain discharges, however, the berm will form again.



Procedure

- Sediment transport numerical modeling with U.S. Army Corps of Engineers HEC-RAS computer program.
- Simulations started at time of berm breach.
- Berm elevation reduced to elevation 1.0 ft NGVD (3.4 ft NAVD).
- Diurnal tidal series used for downstream boundary condition
- Simulations started at both low and high tide




Results for two sequential 2-year floods

Outlet to Ormond Lagoon

November 2009 DEIR Design

September 2011 RDEIR Design

Mosquito Study Summary

- Proposed changes to channel amplify channel's negative effects on mosquito breeding
- Vertical walls most desirable to prevent cover
- Deeper channel provides better habitat for fish
- Wider channel creates more wind/wave action
- Preserves existing ease or safety of access

Mosquito Study Summary

- Ormond Beach Lagoon primary source of mosquitoes in immediate area
- The undeveloped floodplain of OID and urban areas may produce substantial mosquitoes
- New sources at OWWTP in 2009 were identified and addressed
- Evidence suggests current JSD, Hueneme Drain Pump Station, and Hueneme Drain provide poor mosquito habitat
- Proposed project would have no expected change to public health with regard to mosquito production

Environmental Process

- California Environmental Quality Act (CEQA) of 1970
 - Public Disclosure of Project Environmental Impacts
 - Provide Project Impact Information to Decision Makers
 - Incorporate Measures to Reduce Significant Impacts

Environmental Process

- J Street Drain CEQA Compliance To Date
 - Initial Public Meetings in 2008 and 2009 (not required by CEQA).
 - Scoping Meeting: 02/25/2008
 - Draft Initial Study and Notice of Preparation Review Period: 04/10 through 05/09/2008
 - Draft Environmental Impact Report Public Meeting: 11/17/2009
 Review Period: 11/02 through 01/15/10 (extended from 12/16/2009)
 - Release Revised DEIR for Public Review (September 23 through November 7, 2011)
 - Public Meeting: September 26, 2011

DEIR 2009 Comments

- 185 Comment Letters Received
 - 176 from private citizens
 - 3 letters from environmental organizations
 - 6 letters from government agencies

Comment Summary

- Mosquitos
- Project is unnecessary (no flooding) and unfunded
- Just breach the lagoon
- Does design consider global warming?
- Construction noise
- Vibration damage to homes
- Direct impact to landscaping
- Aesthetic/property value effects from tree loss
- More floodwater = more contact with Halaco
- More trash conveyance

Comment Summary

- Prefer box culvert N of Hueneme Rd, overflow channel S of Hueneme Rd
- Consult with CDFG on bird nesting mitigation
- Mitigation insufficient to prevent endangered species take
- Emergency breaching outside the rainy season impacts endangered species

Environmental Process

- J Street Drain CEQA Next Steps
 - RDEIR Public Review Period: 09/23 11/07/2011
 - Respond to Public Comments on RDEIR Adequacy
 - Prepare Final EIR
 - Ventura County Board of Supervisors Hearing: Estimated December 2011

Thank you for your interest

- If you have any questions, please contact:
 - Kirk Norman, Project Engineer, 805-654-2017
 - Angela Bonfiglio Allen, Environmental Planner, 805-477-7175
- To review the DEIR, please go to:
 - www.JStreetDrain.com